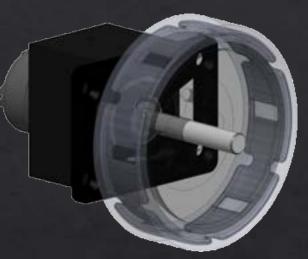

Manan Singh

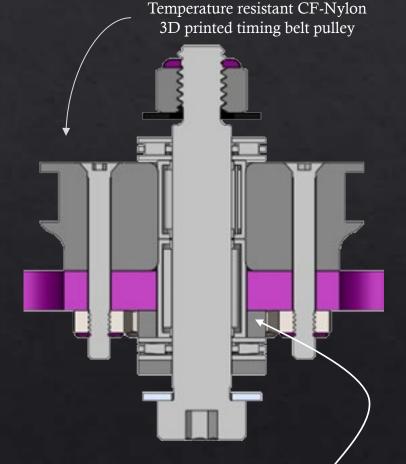
Engineering Project Portfolio

Culverizer


Culverizer – 31b Combat Robot

- I designed and built Culverizer, which utilizes a heavy horizontal blade to batter and disable its opponents
- SD printed 95A TPU body flexes to absorb and disperse impact energy
- The TPU acts as ablative armor, designed to take damage and protect inner electronics

Culverizer – Drivetrain


- ♦ I used 2 brushless gearmotors to direct-drive the robot at 10.5 ft/s, enabling the bot to box-rush and engage opponents immediately
- The drive motors are shock-mounted with TPU, allowing drive motors to deflect and redirect energy away from the gearbox, preserving its lifespan
- ♦ Created custom molds to cast 2.5" OD TPU-core wheels with 40A Urethane treads
 - Urethane provides high traction and acceleration, while adhering to the TPU well
 - The TPU core absorbs impact energy and increases wheel and gearmotor durability

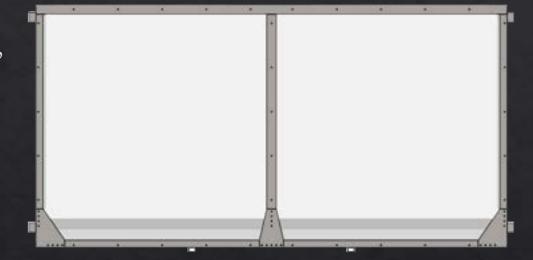
Culverizer – Weapon System

- 1400 kv motor @ 14.8V with a 6:5 belt reduction spins weapon blade at 340 mph
- ♦ Weapon blade stores a max of 1300J of energy
- While this iteration of the weapon system has been the most effective, I'm currently working on improvements to increase its reliability and energy transfer
 - Next iteration will replace 3D printed pulley with aluminum V-belt pulley, allowing the weapon system to slip on high impacts and reduce angular impulse delivered to the weapon motor
 - Aluminum pulley will transfer torque through a spline to avoid putting screws under shear forces

Needle-roller bearings distribute impact forces along shoulder bolt

Culverizer - Competition

- Built 2 copies to be prepared for tight turnaround times between matches
- Competed at 3 tournaments with an all-time match record of 15-8
- ♦ Watch it in action! -> <u>Culverizer vs Surgical Procedure</u>



Beetleweight Combat Robotics Arena

- I was assigned to lead the development and construction of a new arena for 3-lb combat robots for the Purdue University combat robotics club
- Design requirements and constraints:
 - ♦ Large footprint for robot combat 64 square foot minimum
 - ♦ Easy to assemble, transport and store as our competition venue and workspace are 4 miles apart
 - ♦ Quickly serviceable in case of damages throughout the tournament
 - ♦ High visibility from all angles
 - ♦ Double-walled polycarbonate panels with an air-gap to safely contain combat robots
 - ♦ Negative pressure ventilation system to extract fumes in case of battery fire
 - ♦ \$10,000 budget

Beetleweight Arena - Construction

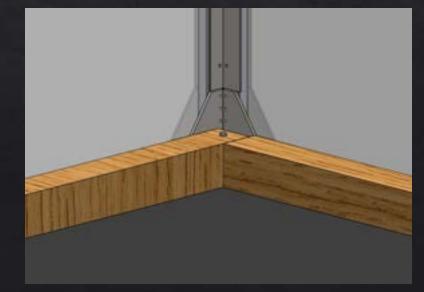
- I came up with a design totaling \$7,000, saving \$3,000, that meets all the necessary requirements, while prioritizing serviceability and ease of assembly
- & 8' long, 8' wide, 4' tall arena stands 3' above the ground providing ample space for combat at a comfortable viewing height
- ♦ The entire frame is assembled and disassembled without use of fasteners, enabling rapid setup
- Double-layered plywood floor provides a safe, durable, and smooth driving experience

Each frame has a ~4'x8' footprint and can be transported flat-packed on a 4'x8' trailer

Frames assemble by being stacked at peg & tube joint at vertical bracket

Beetleweight Arena - Safety

- Safety is the highest consideration in the design of this arena, guiding the decisions I made
- Source the second se
- An 800 cfm fan can pull out all air within the arena in ~20 seconds, extracting toxic LiPo battery fumes in the event of fire
- Sensored door lock changes the arena lights from white to red when the doors are unlocked



Beetleweight Arena - Serviceability

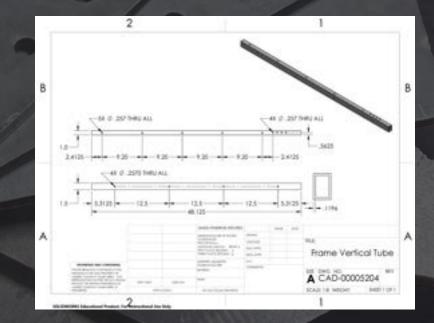
- Polycarbonate panels are inserted from the top and can be replaced in less than 10 minutes
- Polycarbonate panels bisected to save costs; replacing a 4x8 panel is much more expensive than a 4x4 panel
- Consumable wood kickplates limit gashes and scrapes from damaging polycarbonate
- Floor panels can be inserted through the door and replaced in 20 minutes

Arena - PDM

- We're using the Aras Innovator PDM system to collaborate with other club members on the design and share data for manufacturing
- I trained members on understanding and utilizing the PDM software
- Using PDM to link part drawings for manufacturing to their Part Documents

004039	H				
00	** 1	1 · · ·			
Part					
Part Number P0004039	Revision State A Preliminary			Assigned Team Railside Robotics	
Name Bostieweight Arena	TLA			Designated User Railside Robotics	
Type Assembly	Unit	Make / Buy Make	Cost	Effective Date	
Long Description					
			3		
Changes Pendi	na	Control Type			

BOM Part NC BOM Structure Alternates AML Documents CAD Documents Analysis Containers Goals Changes Part Submission Warrar


O ₩ O P 3 V 10 0

O P

art Number	Re_	State	Sequence	Quantity	Claimed By	Name	Effectivity
P0003940-001	A	Preliminary	5	2		Beetleweight Arena Wall Frame	
P0004036	A	Preliminary	25	3		BWAR Rubber Strip	
P0004036-001	A	Preliminary	30	4		8WAR Rubber Strip	
P0004041	A	Preliminary	40	2		8WAR L-Channel	
P0003939-001	A	Preliminary	45	1		BWAR Door Panel VerticalTube	
P0004040-002	A	Preliminary	70			8WAR UHMW Retaining Plate	
C P0004036-002	Α	Preliminary	75	1		8WAR Rubber Strip	
C P0004054	A	Preliminary	90	- 1		BWAR Tube Mirror	
C P0003939-003	A	Preliminary	105	1		BWAR Door Panel VerticalTube	
C P0004140	A	Preliminary	110	4		SWAR Wall Peg Holder	
C P0004213	Α	Preliminary	125	2		BWAR Tube Guide	
C P0004212-001	A	Preliminary	130	2		BWAR Floor Brace Mount	
		110					

Beetleweight Arena - Manufacturing

- Considering the scale of this project, after completing the design, the next biggest challenge for me has been managing the arena's manufacturing
- Leading a team of 10 members in manufacturing over 40 unique parts
- Using part drawings to ensure consistent and accurate parts are made
- Utilizing CNC Mills, laser cutters, and welding to construct the steel frame

